Николай Иваныч (nivanych) wrote in category_theory,
Николай Иваныч
nivanych
category_theory

Dependent Inductive and Coinductive Types are Fibrational Dialgebras

Dependent Inductive and Coinductive Types are Fibrational Dialgebras
Henning Basold
http://arxiv.org/abs/1508.06779
In this paper, I establish the categorical structure necessary to interpret dependent inductive and coinductive types.
It is well-known that dependent type theories à la Martin-Löf can be interpreted using fibrations.
Modern theorem provers, however, are based on more sophisticated type systems that allow the definition of powerful inductive dependent types (known as inductive families) and, somewhat limited, coinductive dependent types.
I define a class of functors on fibrations and show how data type definitions correspond to initial and final dialgebras for these functors.
This description is also a proposal of how coinductive types should be treated in type theories, as they appear here simply as dual of inductive types.
Finally, I show how dependent data types correspond to algebras and coalgebras, and give the correspondence to dependent polynomial functors.
Subscribe
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 4 comments